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EFFECTS OF LOCALIZATION AND FORMATION OF STRUCTURES DURING THE COMPRESSION
OF A FINITE MASS OF GAS IN A PEAKING MODE’

M.A. DEMIDOV and A.P. MIKHAILOV

The problem of the adiabatic compression of a finite mass of gas with a
cylindrical or spherical piston is considered. The pressure at the piston

increases in the peaking mode according to the law P (0,8 = Py (tjec — t)"s, ng =
-2y N+ )y +1+N(y—1), i.e. it becomes infinite as t—tp, N=0,1,2 is
the symmetry index and y is the adiabatic index. The entropy of the gas

is distributed over the Lagrangian mass coordinate m: s=lIn{a,|m — m|%}, aq
my, 8 are parameters. The existence of localization of hydrodynamic
processes is shown for the case when N=0; in spite of the unlimited
growth of pressure at the piston the perturbations do not penetrate beyond
a certain finite mass of gas (the region of localization). Outside the
region of localization the gas is not affected by the piston and remains
in its initial state. The other effect consists of the formation (when

8 #0) of gas-dynamic structures, including complex ones such as localized
temperature or density maxima connected with the fixed mass of gas.
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In the plane case the piston trajectory ensuring convergence of all characteristics at a
single point was found in /1/. BAnalogous spherical and cylindrical centered compression waves
were studied in /2—4/ ** (**See also: Kazhdan Ya.M. On the problem of the adiabatic compression
of a gas by means of a spherical piston. Preprint Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow,
89, 1975; Kazhdan Ya.M. Adiabatic compression of a gas by a cylindrical piston, Preprint
Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 56, 1980.). A somewhat different approach to
the study of shock-free compression in /5/ was based on constructing the solutions in terms
of separable variables (a corresponding solution for the case of isentropic compression was
obtained in /6/). This approach, unlike the solutions in characteristics, can be generalized
to the case of media with different physical processes /6, 7/. In both approaches shock-free
supercompression demands that the pressure at the piston should vary in a peaking mode, i.e.
that it should become infinite on approaching the final instant of time.

Below the selfsimilar solutions in separable variables are used to generalize the results
of /7/ to the case of the adiabatic (non-isentropic) compression of a finite mass of gas.

Two effects, not dealt with earlier, are also studied, namely the localization of the gas-
dynamic perturbations and the appearance in the compressed matter of structures which appear
as a result of the non-isentropic character of the medium and localization (inertia) of the
gas-dynamic processes. The latter combines them with unsteady thermal structures /8-10/.
The entropy distrubition in the gas can be caused, for example, by a shock wave moving with
non-uniform velocity.

1. Formulation of the problem. One-dimensional adiabatic gas flow is described
by the set of equations

a4\ _a¢Nu) ou__  n O d (p\_o O _

Tt(T)_'—am "o = T Tm Er(pv)—oi ar Y (19)
where m is the Lagrangian mass coordinate, p, p, 4, r and the pressure, density, velocity and
the spatial coordinate, and vy, N are the adiabatic and symmetry indices.

We will choose the adiabaticity integral in the form of a power function

ppY=as|m—m I (1.2)
(8, m; are parameters). Formula (1.2) holds, in particular, for the entropy distribution
behind a shock wave front converging on the centre of symmetry, with m, =0,8 = —2 (1 — a)/(3a),

where @ is the selfsimilarity index (for y = 5/;a = 0.667 /11/).
The solution of system (1.1) in separable variables has the form

P (my 8) = po(troe — 8)" 50 (8), u (my 8) = g (e — &) v (3) (1.3)
where n (E) and v (f) are dimensionless functions of the selfsimilar coordinate
E = m/m, (1.4)

The parameters m,(with dimension of mass) and u,depend on the constant p, (determined from
the pressure mode at the piston) and the entropy constant a,* (*See also: Demidov M.A. and
Mikhailov A.P. Localization and structures in the adiabatic compression of a finite mass of
gas in the peaking mode. Preprint Inst. Prikl. Matem., Akad. Nauk SSSR, Moscow, 8, 1983.).

The following inequalities hold for the indices n, n;:

n=—2yWN+ 1y +1+Ne—-1)<0n=—-n/ly(N+1))—1 <0 (1.5)
From (1.3), (1.5) it follows that the gas pressure and velocity are zero at the instant
t = —oc,and all its particles are at infinity. When ¢ —{¢,, (tp. is the instant of peaking),

the pressure, velocity and density of the gas all increase without limit, and the radius tends
to zero.
The spatial distribution of the gas-dynamic functions is described by the following
system of selfsimilar equations:
my

S =)ol + E— B Py =0, (— )V S =0, b= = (1.6)

Mo
the boundary conditions for which are given below.

2. Compression of the half-space. We consider the problem of compressing a gas
with a flat piston situated at the point m = 0(f = 0). The piston velocity is restricted when
t < tier 1. 0<w(0)<{oo. Putting p(0, ) = pg (foc — t)"S we obtain from (1.3) =(0) =1.

We seek solutions for which s (), v (E) >0 when E<§ (5 >0 is the selfsimilar coordinate
of the compression wave front separating the moving gas from the unperturbed gas) and when
t =% , the velocity and pressure of the gas both become zero: xn (&) = v (§) =0.

If the quantity § is finite, we have the localization effect. Indeed, when m > my = §m,,
the solution of the problem in question can be continued by means of the steady-state solution
of the system (l.1): p (m,t) = pg, 4 (m, t) = p (m, {) =0. Therefore, when m <m; (in the region
of localization), the gas-dynamic functions increase in the peaking mode, and when m > my
cold matter at rest can be found (separated from the wave front by a contact discontinuity)
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into which perturbations do not penetrate.
The solution for the isentropic case (§ =m; = 0) can serve as an example:

a(E)=0—-¥gven, yp@E)=—a'E), 0<ECY = 2.1)
=DV -+ D

The problem formulated is equivalent to a second-order differential equation (see (1.6))
with N = 0),with boundary conditions

W —JE=§ Y =0, n(0) =1, — oo Lo’ (0) < O, 2.2)
n()=a"(§) =0

The asymptotic forms of the pressure and velocity near the piston and the front t=§
are given by the formulas

1 —2(0)E + B P82, 0, v (0) = — «' (0)

7 (Eo=1{ 1 —v(0)F +72(8 +7)L(8 + 2p) 2 g0samry, 23)
B=0,6>—%
when & — §, three cases are possible:
a)m (8) = ((8 — &) (& — &)Y 2y (v — )7 (v + 1)YWOeD) ¢ 2.4)
E_)Ef#glv 0o

b)n (§) = (a (e — 1))V | E—E |5 a0 =014 2v) (v +
DE—=E=8.0>1—7%
c)n (k) =(x(@— 1)V E —§ 5 E—§ =0, 8§ —2
In cases b) and c¢) Egs.(2.4) yield an exact solution for problem (2.2) with
18 = &* = (@ (@ — )werm 2.5)
The entropy singularity cannot be situated within the mass of the compressed gas, i.e.
8,28 or § <0. If on the other hand 0 <{§; < §, then the density or temperature becomes
infinite when § =§, (see (1.2)) and a solution cannot be constructed in the region 0 < E < ¥§.
The substitution
y=aE—§ e =—n [ E—§ [Ya' (B) {2.6)

makes it possible to study problem (2.2) in the phase space of the following first-order
equation:

d - A 1 1 .

=t o=T 4+ L A=sigmG—b) @)
The following point in the zy plane corresponds to the piston:
(0,70 =(1E& o), | & ™ (2.8)
and the values
(0! 0)1 §f 7‘: §1v o0

Tp Yy = . 2.9
@90 ={ ( Chars | 8% 20), & = &1, & = o0 @9)

correspond to a point on the front. Problem (2.7)—(2.9) is analysed using standard methods /12/.

Let &~ E;, 0 (we consider the solution with a finite front, and the entropy singularity
does not coincide with its position). For any ¢, & and §, there exists a unique integral
curve L in the guadrant z >0, ¥y > 0, emerging from the point (0, 0) of the front and satisfying
the asymptotic forms (2.4), and we have on this curve yr = 2y/(y—1)2® +- ¢ (2), $(z) 22 -0 as
z-—0. The solution sought' is part of the integral curve L lying between the points of
the front {0,0) and the piston (2.8). To construct the solution for given §, = y,V(0®, we
must choose the value of the independent parameter p (0) ==z (0) yv'©®* (0) so that the point of
the piston (2.8) lies on the integral curve L.

Three cases are possible.

1°, %, = 0 (the entropy singularity is situated on the piston 8§ > —y /4/,2(0) =y (0) =
+). The curve L connects the points (0, 0) and (+ oo, + o0), i.e. a solution exists and is
unique since z and y increase monotonically during the motion from the front towards the piston
(Fig.l) .

2°a. E, << 0,a > 0 (the entropy has no singularities in the gas in front of the piston
z(0), ¥ (0) <<+ o). The field of integral curves is identical with that of case 1°; therefore
a solution exists and is unique.

2%, £, <0, a <0 (compared with case 2%, the entropy falls rapidly on moving away from
the piston). When a <0, a singularity B ((— 4a)%, | §* [-*°) appears in the quadrant x>0,
y >0, the singularity is a node and becomes a focus when a<a* (Fig.2) a* = (1 — V1 + y)/2.

The relations z <<z << o0, y<<y; << %, 2y = 2, (8, ), ¥y, = ¥, (§, Y)hold on curve L. This
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implies that a solution only exists when |[§, | < §** = y /@2 (which represents a restriction
on the entropy distribution) and when v (0)> n** = 2,7ij,ifiva) (restriction from below on the
piston velocity, see (2.6)). When |§; |<&H*** = y,71/©®®, the solution is unique and ceases

to be unique for *** < |§) | < §,**, since for any given value §, from this interval there
exists a spectrum of values v (0), corresponding to various positions of the point of the
piston on the integral curve L (Fig.2). When [§, |— | §* |, the number of solutions increases
without limit and there are infinitely many solutions when |§, | = §*.

. 4] //LQ/
e W @)
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\_ N/ i
)
Fig.l Fig.2
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&
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If the point B is a node, then the problem has at most two solutionswhen E*** << | | <<
£1**. In both cases the point B itself is not a solution (see 4© and 59).

A detailed description of the properties of a solution of type 2%b requires additional
explanation.

3° k1> & (the entropy singularity is situated before the compression wave front).

3%. a 1. The behaviour of the integral curve L is analogous to the case 2%a; therefore
a solution exists and is unique. Unlike the case 20a, the curve L has an asymptotic form:
y— + o as z—> A7}, i.e. the piston velocity has a lower limit: v (0)> Adea |E, |"L.

3%. a>1 (just as in case 2%, the entropy falls rapidly as the distance from the
piston increases). A part of the field of integral curves containing the curve L, and therefore
the properties of the solutions, are the same as in the case 2°b.

4°. Let us now consider the case § ==E&. Let & =§, (the entropy singularity is
situated at the front, § >1 — ¢y from (2.4)b). A solution exists only when §;, = §*, is
unique and given by formula (2.4) b), and the point B, which represents the centre of focus,
corresgonds to it in the zy plane.

5 Finally, if §; = oo (the infinite mass of gas in front of the piston is compressed,
from (2.4) c) we have § < —2y), then a solution exists only when § = —§*, 6 << 2y, is unique
and is given by formula (2.4) c¢). As in the solution 42, the point B corresponds to it in
the zy plane.

In cases 2°b and 3% the solution of the selfsimilar problem is not unique. For the
given values ¥, 8, E;, a different number of solutions exists and when §;, = — g* (¢ =8Y),
we have simultaneously infinitely many solutions of the type 2° and a solution of the type
50 (or, respectively, a set of solutions of the type 3% and a solution of the type 4°).
However, the solution of the problem of compressing a gas with a piston is unigue, since
various selfsimilar solutions have various corresponding spatial distributions of the gas-
dynamic functions at the instant when the compression commences (which yield equal entropy
distribution over the mass of the gas and correspond to the same law of pressure at the piston).

Thus, if the medium (y) and the entropy distribution in it (8, %) are given, we can
realize one or another mode of compression (1°—5°). In cases 2°b and 3%b constraints appear
on the parameter £, and in cases 2% and 3° on the piston velocity v (0). In cases 1° 4° 5°
the range of variation of the parameter § is restricted, and in cases 4° and 5° the quantity
18 | =&* is also fixed.

The explicit form of system (1.6) implies that the pressure and velocity in the com-
pression wave fall montonically on moving from the piston to the front.

The degree of compression (heating) of the portion of the medium is determined by its
entropy and the pressure within it. When the profile in monotonic, we can attain large
densities (temperatures) in the compression wave in regions with lower pressure, thanks to
the non-isoentropicity, and obtain the gas-dynamic structures, i.e. localized inhomogeneities
of the density (temperature) connected with the fixed mass of the gas.

Differentiating the expressions for the density (temperature) g(E) =nav | E—E, IO
(0 (8) = m-1¥ | § — §, V), we obtain the conditions for structures to exist in the compression
wave

m' = Abm | E— & I (' = —Adx|E —E, "My — 1)) (2.10)
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In the zy plane conditions (2.10) admit of a descriptive interpretation. The density
(temperature) has a structure if the integral curve L intersects the straight line =z =1z, =
—(48)L, (x = 2, = —,/(y — 1)), and the number of maxima is equal to the number of the points of
intersection. Since the straight lines z =, and z =z, lie in different half-planes, we
can have either density or temperature structures.

1°. ¢, = 0(8 > — y). The solution always constains a unique structure (by virtue of the
monotonicity of the curve L (a maximum) of the density when —y <0 <0, or of temperature
(when 8§ > 0). The density (— y<<8 <C0) or temperature (6> 0) becomes zero when £ =0 (m = 0).

2°a. £, <<0,6> — 2y. For any § <0 (or 8> 0) a parameter E, can be chosen such, that
the integral curve intersects (not more than once) the straight line =z =z, (z = z,); therefore
a unique maximum of the density (temperature) may exist.

2°b. § < 0,8< —2y. The curve L intersects the straight line z=uz <2 for all
values of 6§, and the number of points of intersection increases without limit as & — —oo.
Therefore the solution can contain an arbitrary number of density structures (maxima or minima) .

3%a. &, > &, 6 <1 -—7<0. The integral curve L intersects the straight line z = z,, there-
fore & can be chosen such that the temperature has a single maximum in the compression wave.

3%. §; >¢§,86>1—49. There are no structures when 1 — y<8< 0, and in the case § >0
the solution may contain an arbitrary number of density structures (maxima and minima, just
as in 2%%).

4°, 5°, There are no structures; the density and temperatures are monotonic. In case 4°
the density g () is constant when § =2 (see (2.4), b), i.e. a homogeneous compression of the
extremities in the mass of gas in the peaking mode.

Problem (2.2) has a group of analytic solutions of the form a () =C |E—§ "X —C,jE —
t1P® which exist for the following values of & and 7y (the constants ¢, and C, are found from
the boundary condition on the piston and Eq. (2.2)):

a) 8=0,v=0,p=1,08=29/(y+ 1), =0 (2-11)
b) [Bl=8*p=0=0,v=a, §<—2y or §>1—1;

C) 8=(1—3p/2,06=08=1/0, 6 =2y/(y + 1)

d) §=1—3y, p=—1, v=1, 8= 29/(yp + 1)} .
(e)d=a, B=(26+ 3y — 1)/((3y — I)y/(y+ 1) — 1), e=7£7, a:[

a(a—i)]‘/-_ 2043y —1
Zyv—-0] T @-Dry—@G+D

In case a) the solution isgiven inSect.l (see (1.1), caseb) corresponds to solutions 4° and 5°
Cases c¢) -e) refer to solutions of the type 2° and 39, and the appearance of structures in them depends
on the quantity % The analytic solutions (2.11) confirm the general analysis and possess the
characteristic properties (localization, structures) of solutions of the problem in question.

In the case of m =0(; =0), the formulation of the problem of the compression of gas by
a flat piston in the peaking mode can be generalized to a wider class of selfsimilar solutions

(LS- and HS-modes /13-15/. Here in the LS-modes (slower than the S-mode) the gas-dynamic
processes are localized and structures appear (when § == 0),

3. Compression in cylindrical and spherical geometry. when N =1,2 the gas
is inside a cylindrical or spherical piston, collapsing as ¢—»f,.. The mass of gas and its

radius are measured from the axis (centre) of symmetry of the system at which the velocity must
equal zero. The coordinate m, (§, = m,/m;) equal to the mass of compressed gas, corresponds
to the piston.

By virtue of the separation of variables (see (1.3)) v (§) = —R (§), i.e. the velocity
becomes zero only at the centre of symmetry of the system § =0 (m = 0). Thus it follows that
we cannot construct solutions with the property of localization within the framework of the
selfsimilar formulation given. Therefore we consider, for N = 1,2, also the solutions for
which the pressure at § =0 is not zero. The boundary conditions for system (1.6) take the
form

n(E) =1, |v(E)|<oo,n(0)>0,v(0)=0 (3.1)
and the last condition of (3.l) is satisfied automatically.

As in the case when N =0, five types of solution may exist depending on the position
of the entropy singularity: 1° 8 =§, (5, =0,N=0); 2°. §, =, (§;, <0, N=0); 3°. § <0 (8, >
B N=054 5 =0 (5, =§ N =0);5F = oo (& = oo, N = 0).

The solutions of type 5- correspond to compression of an infinite mass of gas inside a
closed piston, and will not be considered further.

As in the case when N = (0, the asymptotic forms of the velocity as t— E, vield, in cases
1° and 4°, the following constraints on the parameter §:1°. 86> — 9;4° 6>1 — y.

When N =2 problem (1.6), (3.l1l) takes the form

B @) | E— Y =0, n () =1, ' (§)>0, (3.2)
' (0) =00, mn(0) >0
The asymptotoic forms of the velocity and pressure as £—>% =0 imply that solutions of
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the type 4°, unlike when N = 0, exist only when the additional constraint 8§ <2y, is imposed,
and this represents the special feature of the spherical geometry.
As in the plane case, the substitution

y=mE— & PB s =n | E— & [Yn (B) 3.3)
reduces problem (3.2) to that of solving the following first-order equation:

dy 14 Auz 8 —2v 1

E___nyx’—Az'-}-y’ a= 3‘V—1 ’ 0=3—T (3.4)

1f xn(0) =0, then the point (0, 0) in the 2y plane corresponds to the centre of symmetry
of the system (see (3.3)). A unique integral curve L emerges from this point, satisfying the
asymptotic forms of problem (3.2). If on the other hand the pressure at the centre is not
zero, curve L emerges from a fixed point on the axis y:y, = (x (0))*/¥| §, |92 /3. The behaviour
of the integral curve L in the gy plane determining the existence and properties of solutions
is completely analogous to the case N =0,.i.e. solutions of all types (1°— 4°) exist and
have the corresponding properties (see Sect.2).

As in the case N =0, problem (3.2) has a set of analytic solutions of the form (2.11)

a)86 =0, v=0, p=1, 0=2y/3y—1), =0 (3.5)
D) bl =4* =@ @+ V®, p=0=0, v=—a
)b =(y—1)/2, v=0, p=03y—1)/2), 6=1/p
The existence of the density and temperature structures in the solution (3.5) is governed
by the parameters 8§, ¥y, &, §,. The homogeneous compression corresponds to the solution (3.5) b)
with & =1/,
when N =1, the second equation in the initial system (l.l) becomes autonomous, and we
will write its solution taking (3.l) into account, in the form

p (mv t) = P (tloc - t)-’(mo +m— mp)/mo (3'6)
The pressure profile in the compressed medium does not depend on the medium (yy itself,
nor on the distribution of entropy in it. It is fully defined by the boundary mode at the
piston, and this in turn is the same for all media (it is independent of 7).
The general solution of the problem (1.6), (3.1) with N = 1 has the form

@) =1—t+¢& 3.7)
v () =—[§18— & 1% (1 — & + E)Vvak]"
g = E— & (1 — & + B

The integration constant for the velocity is chosen from the condition v(0) =0. Since
n(0)=1—%,>0, it follows that the mass of the compressed gas has an upper limit my < m,.
This inequality represents a generalization of the result in /6/, where a solution of the type
(2.1) was also obtained when §=m, =0 for N =0, 1,2.

The conditions of existence and the properties of the solutions, and the presence of
structures are found directly from (3.7). We note that when }, = §,* = 1, homogeneous compression
occurs (see Sect.2) when § =1,

The special feature of cylindrical symmetry is the impossibility of constructing a solution
of the type 2°b and 3%, non-unique and containing complex density structures. This is related
to the fact that the second equation of the system (l.6) is autonomous.

put P f
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4. Results of numerical calculations. Numerical calculations carried out for
system (l1.1) using the FLORA /16/ program show, how a selfsimilar compression mode emerges
from the non-selfsimilar (e.g. homogeneous) initial data. They also illustrate the stability
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of the solutions constructed, and of the gas-dynamic structures, and show the method of
exciting the structures under monotonic (especially homogeneous) initial data and monotonic
boundary mode. The curves 0,1,2, 3,4 shown in Fig.3-5 correspond to the values ¢ = —1,0,a;=
Po=1,t =1y, bty by, tg tyoc = 0, ¥ = %/3.

Fig.3 illustrates the emergence into the selfsimilar mode from the constant initial data
when N = 2. The sufficient condition for establishing the selfsimilarity (halting the half-
width of the compression wave) is, that the pressure at the piston grows to approximately 10O
times its initial value (m; =6 =0, t;, = —0.25, t, = —0.125, ¢ = —0.0%, ¢, = —0.035).

The stability of the structures is demonstrated by the calculations shown in 4 (N =1).

The initial data (including the density maximum) are given in accordance with the analytic
solution (3.7) which is reproduced in a stable manner when the pressure at the piston increases
by a factor of 105 (6= —1.2, my = 3.2, #; = —0.4, t, = ~0.05, t; = —0.02).

Fig.5 shows the results of a calculation illustrating the formation of a density structure
in an initially homogeneous gas with monotonic boundary conditions, and the localization of
the gas-dynamic processes in the case N = 0. At the initial instant the pressure at the piston
is 50 times greater than the gas pressure. As a result the discontinuity collapses and a
shock wave departs from the piston. The entropy behind this shock wave is distributed accord-
ing to a law resembling (1.2) m; =0, § = —0.8. Further, the pressure at the piston varies accord-
ing the the law (1.3), (1.5) and a compressive S-mode is established. The resulting density
structure is stationary with respect to the mass coordinate and increases in the corresponding
peaking mode ¢ = —0.59, t, = —0.085, t, = —0.026, ¢, = —0.003.

The peaking modes discussed here have a number of interesting physical properties., In
addition to the shock-free, low entropy compression we have the effects of localization and
formation of gas-dynamic structures. The localization indicates the fundamental possibility
of concentrating and retaining over a finite period of time any amount of energy within some
mass of the material, without affecting its remainder. The formation of structures provides
adiditional methods of controlling the compression process by creating non-monotonic temperature
and density distributions in the compressed material.

The authors thank S.P. Kurdyumov, N.V. Zmitrenko, Yu.A. Klokov and V.V. Stepanova for
valuable comments.
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ON THE THEORY OF REGULAR PIECEWISE-HOMOGENEQUS STRUCTURES WITH
PIEZOCERAMIC MATRICES®

0.A. IVANENKO and L.A. FIL'SHTINSKII

A piecewise-homogeneous medium consisting of a piezoceramic matrix bonded

by a doubly-periodic system of anisotropic fibres, dielectrics, is
considered. The electroelasticity boundary value problems occurring here
reduce to a system of Fredholm integral equations of the second kind

whose solvability is proved. Concepts of mean mechanical and electrical
quantities are introduced from energy considerations, between which a
relationship is given by the equations of state of the structure macromodels.
The algorithm constructed is realized numerically. Results are presented

of computations of the average elastic, electrical, and piezoelectrical
properties of the medium as a function of the cell microstructure.

Models of elastic linearly-reinforced composite materials with
isotropic and anisotropic components were examined for example, in /1-3/.
A survey of the results in the area of electroelasticity boundary value
problems can be found in /4/.

1. Formulation of the problem. We consider a transversely isotropic piezoelectric
medium (a crystal of the hexagonal 6 mm system, PZT-4, P2T-5, etc. piezoceramic, prepolarized
along the z axis), reinforced by a doubly-periodic system of identical anisotropic fibres
along the y axis, referred to the crystallographic zyz axes. The fibre transverse cross-
section is a simply-connected domain bounded by a simple closed curve ! with curvature satisfy-
ing the Ho6lder condition /5/. The fundamental periods of the structure are denoted by ®; and

0, (Im (0,/@;)>0) the domain occupied by the matrix by D, and
z the domain occupied by the fibre in the unit cell Il by D,.
For such an idealization in the plane of the transverse

<¥€Z7ﬁ section we obtain an infinitely connected domain that is

¢ invariant under the group of translations T (z) =z + P, where
7 P is the complex period (Fig.l). We shall assume the mean
components of the mechanical stress tensor <0, {Ty), {0,)
/ and the electrical intensity vector <{E >, <(E,> act in the
structure.

We will construct a model of a regular piezoceramic medium
under the following additional assumptions: a) all fibres have
identical physicomechanical properties and possess a plane of
elastic symmetry perpendicular to the y axis; b) conditions
hold for ideal electrical and mechanical contact between the

Fig.l fibre and the matrix. Under these conditions the fields of
the mechanical stresses, the induction and intensity vectors
of the electrical field possess the same symmetry group as does the domain D.
The mechanical and electrical quantities in the matrikx are defined by the formulas

3
U=2Re *Zl px@x (z), W=2Re kzl 7@ (2x) {1.1)

3 3
o:=2Re ,gl V'@’ (25), Teg=—2Re él Yt Dy (2x)
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